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Abstract In this paper, we propose a full computational
framework to simulate the hemodynamics in the aorta includ-
ing the valve. Closed and open valve surfaces, as well as the
lumen aorta, are reconstructed directly from medical images
using new ad hoc algorithms, allowing a patient-specific sim-
ulation. The fluid dynamics problem that accounts from the
movement of the valve is solved by a new 3D–0D fluid–
structure interaction model in which the valve surface is
implicitly represented through level set functions, yielding,
in the Navier–Stokes equations, a resistive penalization term
enforcing the blood to adhere to the valve leaflets. The
dynamics of the valve between its closed and open posi-
tion is modeled using a reduced geometric 0D model. At the
discrete level, a finite element formulation is used and the
SUPG stabilization is extended to include the resistive term
in the Navier–Stokes equations. Then, after time discretiza-
tion, the 3D fluid and 0D valve models are coupled through a
staggered approach. This computational framework, applied
to a patient-specific geometry and data, allows to simulate
the movement of the valve, the sharp pressure jump occur-
ring across the leaflets, and the blood flow pattern inside the
aorta.
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1 Introduction

In the context of computational fluid dynamics for the car-
diovascular system (see, e.g., Quarteroni 2015; Formaggia
et al. 2010; Peskin 2002), patient-specific simulations have
become increasingly important (Caballero and Laín 2013;
Taylor and Steinman 2010): indeed, they can be used together
with classical imaging methods to perform diagnosis, to
providemore insights in the study of the evolution of patholo-
gies, or to help in surgical procedure planning, e.g., to
virtually create alternative treatment strategies for a given
patient.

In the whole cardiovascular system, the proximal aorta
together with the aortic valve is likely the most investigated
environment (Caballero and Laín 2013; Chandran and Vig-
mostad 2013; Faggiano et al. 2013a; Conti et al. 2010a; Pasta
et al. 2013; Marom et al. 2013; Tse et al. 2011; Rinaudo and
Pasta 2014;Wendell et al. 2013). The aorta is the main artery
of the human body suppling oxygenated blood and nutrients
to all the components of the body. It originates from the left
ventricle of the heart and extends down to the abdomen. In
its first tract, it comprises the aortic root and the ascend-
ing aorta. The aortic root includes: (a) three enlargements,
the so-called sinuses of Valsalva, classified as left coronary,
right coronary and non-coronary sinuses, (b) the fibrous aor-
tic annulus connecting the valve leaflets, the sinuses, and the
ventricle, and (c) the sinotubular junction (STJ) represent-
ing the region where the normal tubular configuration of the
aorta is attained. The left ventricle and the aortic root are
separated by the aortic valve which features three thin and
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flexible leaflets shaped as curved triangles and attached to
the fibrous aortic annulus, forming with the latter a parabolic
profile (Charitos and Sievers 2013). The efficient opening
and closing of the aortic valve during the cardiac cycle guar-
antees the appropriate circulation of blood flow from the left
ventricle to the ascending aorta, thus preventing regurgitation
phenomena.

Other than focusing on the valve in physiological condi-
tions, different studies were conducted to understand aortic
pathologies; in this respect, we recall computational studies
of aortic diseases due to bicuspid aortic valve (Chandran and
Vigmostad 2013; Faggiano et al. 2013a; Vergara et al. 2012;
Conti et al. 2010a; Pasta et al. 2013; Marom et al. 2013;
Bonomi et al. 2015), computational investigations of valve
prosthesis (Morganti et al. 2014; Auricchio et al. 2014, 2011;
Hart et al. 2003a;Nestola et al. 2016), and aortic aneurysmsor
dissection studies (Tse et al. 2011; Rinaudo and Pasta 2014).
Among these, some studies aim at understanding the valve
mechanics with a particular interest for stresses internal to
the valve leaflets and the aortic root (Morganti et al. 2014;
Auricchio et al. 2011, 2014; Hart et al. 2003a; Marom et al.
2013; Conti et al. 2010b), while other studies focus on the
fluid dynamics in the aorta investigating possible abnormali-
ties trough appropriate indicators (Chandran and Vigmostad
2013; Faggiano et al. 2013a; Vergara et al. 2012; Conti et al.
2010a; Pasta et al. 2013; Tse et al. 2011; Rinaudo and Pasta
2014; Bonomi et al. 2015; Nestola et al. 2016). In this work,
we introduce a numerical method able to capture the features
of the blood flow through the first tract of the aorta. Since the
flow field strongly depends on the aortic valve function, the
latter should be necessarily included in our model. Indeed,
the valve regulates the blood flow and plays an important role
in both physiological and pathological scenarios.

Our model for the valve characterization involves a three-
dimensional (3D) fluid–structure interaction (FSI) model
accounting for the coupling between valve dynamics and
blood flow. Computational methods for FSI simulations of
aortic valve dynamics can be tentatively grouped into four
categories: the approaches based on the so-called Arbi-
trary Lagrangian Eulerian (ALE) formulation (Chandra et al.
2012; Cheng et al. 2004; Marom et al. 2013), those based
on the immersed boundary (IB) methods (Peskin 1972;
McQueen and Peskin 2000; Griffith 2012), those based on
fictitious domain (FD) formulations (Loon et al. 2006; Hart
et al. 2003a, b, 2004), and those based on hybrid formula-
tions (Ge and Sotiropoulos 2007; Borazjani et al. 2010; Ge
and Sotiropoulos 2010; Le and Sotiropoulos 2013; Kamen-
sky et al. 2015). All of them require a spatial discretization
of the problem over a computational mesh. In the ALE for-
mulation, the computational mesh is deformed to follow the
boundaries of the fluid domain, in this case the aortic valve
leaflets; however, this approach requires frequent remesh-
ing of the domain to deal with large mesh deformation and

involves topology changes when the valve opens and closes.
In both IB and FD methods the fluid is instead discretized
in a fixed computational domain, while the valve structure is
discretized in a separate body-fitted mesh with the coupling
accounted either explicitly or implicitly by adding suitable
forces at the fluid/solid interface. In particular, for the IB
method, the appropriate forces are explicitly added to the
fluid equation and distributed over all nodes of the fluid
mesh through a smoothed Dirac delta function (Peskin 1972,
2002). An evolution of the original method, in which the
mesh is adaptively refined in the proximity of the immersed
boundaries, was applied to aortic valve simulations in Grif-
fith (2012). In the FD method the coupling between the fluid
and the solid problem is made through Lagrange multipliers
(Loon et al. 2006); the method had been applied to simu-
late a trileaflet aortic valve at non-physiological Reynolds
numbers (Re = 900) and with symmetry assumption on
the geometry (Hart et al. 2004, 2003a, b; Morsi et al. 2007).
Finally, among the hybrid formulations, we recall the curvi-
linear immersed boundary (CURVIB) method developed
by Ge and Sotiropoulos (2007) which integrates structured
curvilinear boundary fitted grids with an IB method. The
CURVIB method had been applied to study trileaflet and
bileaflet aortic valves with physiological, pulsating flows,
even if not in realistic aortas (Le and Sotiropoulos 2013;
Ge and Sotiropoulos 2010; Borazjani 2013). Borazjani et al.
(2010) tested themethod in a patient-specific anatomic aorta,
even if only a simple mechanical bileaflet valve has been
simulated. Another recent method is the ALE/IB immerso-
geometric method proposed by Kamensky et al. (2015) and
Hsu et al. (2014) which combines a variational IB method
and the traditional ALE technique. The authors applied the
method to a simplified aortic root geometry and valve leaflets
demonstrating promising abilities of the proposed strategy
(Hsu et al. 2014).

Amajor challenge in trileaflet aortic valve FSI simulations
is to capture the coaptation between the leaflets of the valve
during the closing phase. Most of the previous methods have
circumvented this problem by allowing the valve to remain
partially open (Kamensky et al. 2015; Hart et al. 2003b;
Borazjani 2013). Astorino et al. (2009) introduced an algo-
rithm for calculating self-contacts of thin structures inside a
fluid domain using the FD formulation, which they applied to
aortic valve simulations, even if only for small values of dias-
tolic transvalvular pressure, specifically about 0.1 mmHg.
Marom et al. (2012) have carried out 3D FSI simulations for
an aortic valvewith leaflet coaptation, by coupling afinite ele-
ment (FE) commercial code for the mechanics of the leaflets
with a commercial finite volume flow solver; however, only
the final stages of the valve closure in a simplified geometry
have been successfully simulated.

Several challenges arise when using full 3D FSI mod-
els. They regard high computational costs, handling of large
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displacements of the valve leaflets in the aortic root, con-
tact among the leaflets, and high pressure jumps across
a closed or nearly closed valve. At the numerical level,
highly accurate, stable, and robust spatial and time dis-
cretization schemes must be used. For these reasons, full
3D FSI models are nowadays mostly restricted to study
valves in simplified configurations possibly with simplified
flow assumptions or only with a simpler bileaflet mechani-
cal valve. Indeed, to the best of our knowledge, a 3D FSI
simulation with trileaflet aortic valve and patient-specific
aortic and valve geometry has not been successfully pursuit
yet.

Concerning the patient-specific studies of the fluid dynam-
ics in the ascending aorta reported in the literature, a full
model of the valve is not even considered when the focus is
on valves pathologies (Faggiano et al. 2013a; Vergara et al.
2012; Della Corte et al. 2012; Pasta et al. 2013; Tse et al.
2011; Rinaudo and Pasta 2014; Bonomi et al. 2015; Nestola
et al. 2016). Indeed, the valve is either completely neglected
(Tse et al. 2011; Nestola et al. 2016), or included as an orifice
at the inlet surface without the need of providing its detailed
geometry (Faggiano et al. 2013a; Vergara et al. 2012; Wen-
dell et al. 2013), or embedded as a set of fixed surfaces inside
the aortic domain (Della Corte et al. 2012; Pasta et al. 2013;
Rinaudo and Pasta 2014; Bonomi et al. 2015). In all these
cases, the adopted model describes only the open and closed
states of the valve without accounting for the intermediate
positions between these two configurations. Nevertheless,
most of the above mentioned papers highlight the impor-
tance of the inclusion of the valve in the model in terms of
patient-specific valve orifice or in terms of patient-specific
valve leaflets. In particular, Faggiano et al. (2013a), Vergara
et al. (2012) andWendell et al. (2013) showed that the inclu-
sion of the shape of the valve orifice determines the correct
flow pattern in the vessel, highlighting also the influence of
the area of the orifice. Della Corte et al. (2012) stressed the
importance to include the leaflets surfaces in the fluid simula-
tions, reporting that cusp opening restrictions or asymmetries
cause a modification to the physiological flow direction. A
recent work of Bonomi et al. (2015) highlights—through
simulations performed on the same aortic geometry—the
importance of including complete valve leaflets in themodel,
even if kept fixed, for inducing the patient-specific patho-
logical helical flow patterns in the aorta which otherwise
could not have been fully reproduced, not even through the
mere inclusion of the patient-specific shape of the valve ori-
fice.

Based on the above considerations, we aim at providing a
computational method to study and numerically simulate the
fluid dynamics in the aorta including the valve leaflets and the
aortic valve orifice for the whole cardiac cycle by means of a
reduced FSI model for the characterization of the interaction
between the blood flow and the valve leaflets. Specifically,

we propose a new method for the representation of the valve
leaflets, which we name resistive immersed implicit surface
(RIIS) method. Indeed, our approach is based on the resis-
tive immersed surface (RIS) approach, originally proposed in
Fernández et al. (2008) to study a porous interface immersed
in a fluid and lately extended in Astorino et al. (2012) to
model the aortic valve. However, in the work of Astorino
et al. (2012), the mechanics of the leaflets is neglected and
the valve is replaced by two immersed surfaces fixed in
space describing the open and the closed valve, respectively.
The presence of two valve surfaces is taken into account
in the momentum equation of the Navier–Stokes equations
by adding a penalization term, specifically a resistive term,
which weakly enforces the blood to adhere to the leaflets. In
our approach, we extend the model of Astorino et al. (2012)
representing the valve surfaces implicitly through a level set
formulation for the leaflets. In this way, the immersed sur-
faces are described analytically, thus avoiding the need of
discretizing them by a computational mesh. This newly pro-
posed extension facilitates embedding the resistive method
- firstly used for fixed valves in Astorino et al. (2012) -
into the framework of a valve displacing under a prescribed
motion law.The latter could be deduced from literature-based
physiological data, from patient-specific clinical images, or
determined by numerically solving a mechanical model of
the leaflets. In this respect, the analytical description of the
valve motion allows to track large displacements and large
deformations of the leaflets, as those occurring in the aor-
tic valve. Starting from this consideration, we propose to
use our RIIS method in a 3D–0D FSI reduced model for
the interactions between the fluid and the valve leaflets. We
model the dynamics of the valve between its closed and
open position using a 0D model proposed by Korakianitis
and Shi (2006) based on a second-order ordinary differen-
tial equation (ODE) with the leaflets angle as the unique,
dependent variable. In particular, the configuration of the
valve leaflets at each time instant depends on the flow rate
and the pressure field in the aorta and in the left ventricle
as forcing terms of the 0D valve model. This is achieved
through a reduced fully coupled 3D–0D FSI model where
theNavier–Stokes equations for the blood floware coupled to
the ODE representing the valve dynamics. The leaflets posi-
tion affects the momentum equation of the Navier–Stokes
equations by means of the resistive term, for which the valve
is described with implicit level set functions (RIIS); on the
other side, the ODE describing the dynamics of the valve
receives as input the pressure jump across the valve and
the flow rate. Our reduced 3D–0D FSI model provides the
motion of the orifice and of the leaflets position at a lim-
ited computational cost with respect to a full 3D FSI solver.
Indeed, our model is solved in an Eulerian formulation and
in a fixed computational domain. A similar resistive Eule-
rian surfaces framework was firstly proposed by Laadhari
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and Quarteroni (2016). However, in our work we propose
a significantly different algorithm to couple the 3D fluid
and 0D valve models which allows to obtain realistic phys-
iological results. For the numerical approximation of the
Navier–Stokes equations with the RIIS formulation, we con-
sider the FE method for which the approximate velocity
and pressure variables are built from Lagrangian polyno-
mial basis functions of the same degree. In order to obtain a
stable formulation and to control numerical instabilities asso-
ciated with the highly advective blood flow regime through
the valve, we consider and extend for the first time the
SUPG stabilization (Bazilevs et al. 2007; Forti and Dedè
2015) to the Navier–Stokes equations with RIIS in the frame-
work of the variational multiscale method (VMS). Finally,
in order to deal with patient-specific cases, we develop a full
computational framework starting from medical images and
ending with the numerical simulation results. In particular,
we propose a technique to segment both the aorta and the
leaflets from computed tomography images. The result of
the segmentation of the aorta is then used to generate a com-
putational mesh. Moreover, we propose a new interpolation
strategy which allows to transform a point cloud descrip-
tion of the patient-specific leaflets in an implicit level set
function to be used in the RIIS formulation, and to achieve
the challenging goal of reconstructing patient-specific valve
leaflets. We remark that a patient-specific test case is repro-
duced also in Astorino et al. (2012); the method proposed
in Barber et al. (2007) was used to obtain a patient-specific
volumetric mesh of the aortic root which includes the aortic
valve in both the open and closed positions. Such reconstruc-
tion method is however not straightforward for pathological
cases such as bicuspid valves (which comprise five differ-
ent configurations), unicuspid aortic valves, or implanted
valves in non-natural positions. Indeed, it would require
to map a template mesh over the patient geometry pos-
sibly leading to degenerate meshes (Barber et al. 2007).
Our approach intends to overcome this drawback by sim-
plifying the reconstruction process of the leaflets with a
method that is able to reproduce both physiological and
pathological scenarios, the latter being the most interest-
ing for clinicians. To summarize, the aim of this work is
twofold: (1) propose a new method for blood flow simula-
tion in the aortic root and aorta with the inclusion of the
movement of the valve leaflets; (2) propose a computational
framework that allows to simulate the hemodynamics in a
patient-specific aorta by using patient-specific aortic valve
leaflets.

The outline of the paper is as follows: in Sect. 2 the reduced
3D–0D FSI model for the aortic valve is mathematically
described, while in Sect. 3 its numerical approximation is
afforded; the generation of the aortic domain and the patient-
specific leaflets is presented in Sect. 4. In Sect. 5, the whole
framework is applied to a patient-specific dataset and numer-

ical results on valve movement, pressure and velocity fields
are reported; conclusions follow in Sect. 6.

2 Mathematical modeling

In this section, we describe the RIIS model, we adapt it to
describe the fluid dynamics of the aortic valve (AV-RIIS
model), we recall the 0D model based on ODEs proposed
by Korakianitis and Shi (2006) to compute the aortic valve
angle (AV-0D model), and finally we show our approach to
couple the AV-0D and the AV-RIIS models into the 3D–0D
FSI model for the aortic valve.

2.1 The resistive immersed implicit surface (RIIS)
model

We describe the mathematical model adopted to represent a
fluid in a general domain with an immersed surface into it.
In particular, first we recall the RIS model (Fernández et al.
2008; Astorino et al. 2012), then we describe the surface
through an implicit function, and finally we present our RIIS
model.

Given a fixed domain Ω ⊂ R
3 and an immersed surface

Γ ⊂ Ω , the RISmodel introduced by Fernández et al. (2008)
consists in enriching the classical Navier–Stokes equations
with a penalization term in the conservation momentum
equation holding only on the immersed surface Γ . The RIS
Eulerian formulation for a generic incompressible homoge-
neous Newtonian fluid reads: find the velocity u and the
pressure p such that, for all t ∈ (0, T ):

⎧
⎪⎪⎨

⎪⎪⎩

ρ
∂u
∂t

− 2μ∇ · D(u) + ρ(u · ∇)u

+ ∇ p + δΓ RΓ,ε(u − uΓ ) = f in Ω

∇ · u = 0 in Ω

(1)

endowed with suitable initial and boundary conditions. We
indicate with ρ the density of the fluid, with μ its dynamic
viscosity, and with D(u) the strain rate tensor

D(u) = ∇u + ∇T u
2

. (2)

The corresponding Cauchy stress tensor, in case of Newto-
nian fluids, reads:

σ (u, p) = −p I + 2μD(u), (3)

where I is the identity tensor. The quantities δΓ , RΓ,ε and
uΓ , all referring to the immersed surface Γ , represent the
“Dirac distribution” used to localizeΓ inΩ , a symmetric and
positive second-order tensor modeling its resistance, and the

123



www.manaraa.com

A patient-specific aortic valve model based on moving resistive immersed implicit surfaces 1783

velocity ofΓ , respectively; at this stage, uΓ has to be referred
as a data for the fluid problem. For the sake of simplicity, we
also assume that the boundary ∂Ω of the domain is divided
into two non-overlapping subsets ∂ΩD and ∂ΩN such that
∂Ω = ∂ΩD ∪∂ΩN where Dirichlet and Neumann boundary
conditions are assigned:

u = g on ∂ΩD × (0, T ),

σn = h on ∂ΩN × (0, T ),
(4)

respectively, for g and h given; problem (1) is endowed with
the initial condition:

u(x, 0) = u0(x) in Ω, (5)

for some initial velocity u0. The symmetric tensor RΓ,ε was
introduced in Fernández et al. (2008) to model fixed porous
interfaces (for which uΓ = 0) and in particular medical stent
devices. In Astorino et al. (2012) the same method is used
to model impermeable fixed surfaces (e.g., a fully open and
fully closed aortic valve), for which RΓ = RΓ I with the
real valued function RΓ chosen sufficiently large to weakly
enforce the fluid velocity u to be small or nearly zero in prox-
imity of the surface Γ . In this paper, we generalize the latter
case for a moving immersed surface (i.e., uΓ �= 0). Further-
more, we underline that this method can be interpreted as
a weak imposition of a no-slip condition on the immersed
surface Γ , provided that suitable scalings with respect to the
discretization parameters are introduced. For this reason, we
select RΓ,ε = RΓ /ε I , with ε > 0 a suitable length scale
that we will later link to the FE mesh size. In this way, we
have RΓ /ε → ∞ for ε → 0, ensuring that u|Γ → uΓ .

By defining the Hilbert spaces V = {v ∈ [H1(Ω)]3 :
v|∂ΩD = g}, V0 = {v ∈ [H1(Ω)]3 : v|∂ΩD = 0}, and
Q = L2(Ω) and by choosing v ∈ V0 and q ∈ Q as test
functions for velocity and pressure, respectively, we write
the weak formulation of problem (1)–(4) as follows: find
u ∈ L2(R+; V ) ∩ C0(R+; [L2(Ω)]3) and p ∈ L2(R+; Q)

such that, for all v ∈ V0 and q ∈ Q:

⎧
⎨

⎩

(
ρ ∂u

∂t , v
) + a(u, v)

+ c(u, u, v) + b(v, p) = F(v)

−b(u, q) = 0,
(6)

where we denote with (·, ·) the scalar product in L2(Ω) and
we define the following forms and linear functionals: a :
V × V → R, b : V × Q → R, c : V × V × V → R,
F : V → R such that:

Fig. 1 The two level set functions: a 2D schematic example of the
description of the immersed surface Γ through the level set functions
ϕ and ψ (left); the application to the description of the aortic valve, the
values of the distance function ϕ imaged on a slice (right)

a(u, v) := ã(u, v) + aΓ (u, v),

ã(u, v) :=
∫

Ω

2μ D(u) : D(v) dx,

aΓ (u, v) := RΓ

ε

∫

Γ

(u − uΓ ) · v dγ,

b(v, p) := −
∫

Ω

p∇ · v dx,

c(w, u, v) :=
∫

Ω

ρ
(
(w · ∇)u

) · v dx,

F(v) :=
∫

Ω

f · v dx +
∫

∂ΩN

h · v dγ.

(7)

We notice that the form aΓ (u, v) is associated with the defi-
nition of the “Dirac distribution” in Eq. (1), that is

〈δΓ (u − uΓ ), v〉 =
∫

Γ

(u − uΓ ) · v dγ, (8)

for all v ∈ V ; the method can be easily generalized to the
case of N immersed surfaces Γi by introducing the bilinear
form aΓ,N (u, v) = ∑N

i=1 RΓi /εi
∫

Γi
(u − uΓi ) · v dγ , for

some {εi }Ni=1.
Our approach consists in describing the immersed sur-

face Γ as an implicit surface (Osher and Fedkiw 2001).
This is made by exploiting two level set functions ϕ,ψ :
Ω → R and combining them to implicitly describe the open
immersed surface Γ as:

Γ = {x ∈ Ω : ϕ(x) = 0 and ψ(x) ≤ 0} . (9)

A graphical sketch of the idea is shown for a 2D case in Fig. 1,
left. The use of two level set functions allows to model an
open immersed surface. The first level set function ϕ is used
to identify the immersed surface Γ as a part of its zero level;
the auxiliary level set function ψ is used to cut the zero level
of ϕ in order to obtain the final open surface Γ . Furthermore,
we require that the level set function ϕ is a signed distance
function (forwhich |∇ϕ| = 1). In this way,we ensure that the
value of the function ϕ in Ω represents the signed distance
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to the immersed surface Γ (Osher and Fedkiw 2001). As
example, we show in Fig. 1, right, the values taken by the
distance function ϕ at a constant level of the coordinate z,
where Ω represents the aortic root and Γ is the open aortic
valve.

Now,weuse the two level set functionsϕ andψ to describe
the immersed surface Γ implicitly. First, we define a smooth
Dirac function to approximate the “Dirac distribution” δΓ as
follows:

δε(ϕ) =
{ (

1 + cosπϕ
/
ε
)
/2ε if |ϕ| ≤ ε,

0 if |ϕ| > ε.
(10)

In this manner, we have
∫ +∞
−∞ δε(ϕ) dϕ ≡ ∫ +ε

−ε
δε(ϕ) dϕ =

1. We observe that the smoothing parameter ε is the same
length scale of Eqs. (1) and (7) used to weakly enforce
the velocity u to adhere to uΓ on Γ through the resistive
approach. We obtain:

|Γ | =
∫

Ω

δΓ dx =
∫

Ω

(
1 − H(ψ)

)
δε(ϕ) dx, (11)

where H is the Heaviside function:

H(ϕ) =
{
1 if |ϕ| ≥ 0,

0 if |ϕ| < 0,
(12)

with the definition of Γ in Eq. (9) and the fact that ϕ is
a signed distance function. Therefore, we approximate the
resistive term aΓ (u, v) of Eq. (7) as:

RΓ

ε

∫

Γ

(u − uΓ ) · dγ � RΓ

ε

∫

Ω

(
1 − H(ψ)

)
δε(ϕ) (u − uΓ ) · v dx,

(13)

the latter term being an approximation of RΓ

ε
〈δΓ (u −

uΓ ), v〉. This approximation allows to replace the surface
integral on Γ with an integral in the whole domain Ω .
We remark that such approximation improves for ε → 0.
According to this approach, one can describe a moving
immersed surface by suitably defining the level set functions
ϕ andψ as dependent on the timevariable t other than the spa-
tial variable x. These features can be introduced in virtue of
the implicit definition of the immersed surfaceΓ and, for this
reason, we name our approach resistive immersed implicit
surface (RIIS). More explicitly, we redefine the bilinear form
a(u, v) in Eq. (7) introducing the bilinear form aRIIS(u, v)

as:

a(u, v) := ã(u, v) + aRIIS(u, v),

aRIIS(u, v) := RΓ

ε

∫

Ω

(
1 − H(ψ)

)
δε(ϕ) (u − uΓ ) · v dx.

(14)

2.2 The RIIS model for the aortic valve (AV-RIIS)

Weuse the RIISmodel to describe the blood flow through the
aortic valve. For this reason, we identify the domain Ω with
the anatomic region composed by the final part of the left
ventricle, the aortic root, and the ascending aorta. Hence, we
split the boundary as: ∂Ω = ∂Ωwall∪∂Ωin∪∂Ωout,where the
three subsets of ∂Ω represent the lumen surface of the aorta,
the inlet boundary in the left ventricle, and the outlet bound-
ary at the upper end of the ascending aorta, respectively.
In particular, we assume the inlet ∂Ωin and the outlet ∂Ωout

boundaries as the planar surfaces orthogonal to the centerline
of the vessel,with outward normals nin and nout, respectively.
By recalling the notation of Eq. (4) ∂Ωwall = ∂ΩD and
∂Ωin ∪ ∂Ωout = ∂ΩN , we assign an homogeneous Dirichlet
condition on ∂Ωwall for the velocity andNeumann conditions
both on the inlet and the outlet boundaries to set the pressure:

u = 0 on ∂Ωwall × (0, T ),

σ nin = pin nin on ∂Ωin × (0, T ),

σ nout = pout nout on ∂Ωout × (0, T ),

(15)

where pin = pin(t) and pout = pout(t) are the pressure
functions prescribed according to physiological values.

We define the two level set functions ϕ and ψ in order
to represent the aortic valve at each time t ∈ (0, T ). More
in detail, through the level set functions ϕop, ϕcl, ψop, ψcl :
Ω → R, we represent the valve in the fully open (op) and
closed (cl) configurations; such functions are fixed in Ω and
independent of time. Indeed, the valve remains in one of these
two configurations for almost thewhole cardiac cycle, except
during its fast opening and closing stages. Moreover, we can
reconstruct these two configurations directly from medical
images in a patient-specific geometry (as will be outlined in
Sect. 4), while it is basically impossible to recover the level
set functions for the intermediate valve configurations (dur-
ing the opening and closing stages). The configuration of the
valve at each time is then obtained by linearly interpolating
the open and the closed ones as:

ϕ̃(x, t) = ϕ(x,K(t))

= K(t) ϕop(x) + (1 − K(t)) ϕcl(x),

ψ̃(x, t) = ψ(x,K(t))

= K(t) ψop(x) + (1 − K(t)) ψcl(x),

(16)

by means of a suitable time dependent interpolation function
K : R → [0, 1], for all t , that will be characterized later.
Hence, the evolution in time of the two level set functions ϕ

and ψ depends only on the evolution in time of the function
K. Note that the two distance functions ϕop and ϕcl must
use the same sign convention, i.e., negative values within the
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aortic valve (where the blood flows from the ventricle to the
aortic root) and positive outside of it.

Now, we define the velocity of the aortic valve uΓ . We
observe that the movement between its closed and its open
position is mainly orthogonal to the valve surface Γ . Thus,
we assume the velocity of the valve uΓ to have the same
direction of the normal to the surface of the valve represented
by ϕ. Therefore, by exploiting the properties of the level set
functions (Osher and Fedkiw 2001) and the fact that ϕ is also
a signed distance function (|∇ϕ| = 1), we define the velocity
of the valve as:

ũΓ (x, t) = −∂ϕ̃(x, t)

∂t
∇ϕ̃(x, t)

= −∂ϕ(x,K)

∂K
dK(t)

dt
∇ϕ(x,K(t)).

(17)

Indeed, the vector ∇ϕ̃ is equivalent to the normal of the sur-
face nΓ (positive outside the aortic valve, coherently with
the sign convention), while the scalar function −∂ϕ̃/∂t is
related to the magnitude of the velocity field ũΓ (Osher and
Fedkiw 2001) since we assumed uΓ = (uΓ · nΓ )nΓ . We
notice that if the valve is opening, −∂ϕ̃/∂t is positive and
the velocity ũΓ takes the same direction and verse of the sur-
face normal nΓ ; on the contrary, if the valve is closing the
quantity −∂ϕ̃/∂t is negative and the velocity ũΓ takes the
opposite verse of the surface normal nΓ . Finally, by using
the definition (16) of the distance function ϕ, we express uΓ

through the function K(t) as:

uΓ (x,K(t)) = dK(t)

dt

(
ϕcl(x) − ϕop(x)

)

· (
K(t)∇ϕop(x) + (1 − K(t))∇ϕcl(x)

)
.

(18)

Equations (15), (16), and (18) determine our approach to
apply the general RIIS model to the aortic valve (AV-RIIS).
In summary, we describe explicitly the aortic valve in the
open and closed configurations through ϕop andϕcl, while we
obtain the intermediate configurations and the valve velocity
uΓ through the choice of a suitable functionK(t); we outline
our approach to determine K(t) in Sect. 2.4.

2.3 The OD model for the aortic valve angle (AV-0D)

We exploit the 0D model proposed by Korakianitis and Shi
(2006) for the aortic valve (AV-0D model) to model in a
realistic way its behavior during the cardiac cycle. The AV-
0D model consists in a ODE with the opening angle ϑ(t) of
the valve as dependent variable, for which the forces acting
on the valve are modeled by using the pressure in the left
ventricle Plv, the pressure in the first section of the ascending
aorta Pao, and the flow rate in the ascending aorta Qao as:

Table 1 Parameters of the AV-OD model for the aortic valve angle
from Korakianitis and Shi (2006)

kp ( rads2 mmHg) k f (s−1) kb ( rads m ) kv ( rads m ) ϑmin ϑmax

5500 50 2 7 5
◦

75
◦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2ϑ(t)
dt2

+ k f
dϑ(t)
dt = kp

(
Plv(t) − Pao(t)

)
cos

(
ϑ(t)

)

− kv sgn(Qao(t)) Qao(t) sin
(
2ϑ(t)

)

+ kb Qao(t) cos
(
ϑ(t)

) ∀t ∈ (0, T ),

ϑ(0) = ϑmin,

dϑ(0)
dt = 0,

(19)

where sgn(·) is the sign function; k f , kp, kv , and kb are suit-
able valve parameters. Since the aortic valve yields a fixed
angle when totally open or closed, the model also defines
minimum ϑmin and maximum ϑmax angles leading to the
constraint ϑ(t) ∈ [ϑmin, ϑmax], for all t . The values of
the parameters originally proposed in (Korakianitis and Shi
2006) for a physiological aortic valve are shown in Table 1.

2.4 Coupling the AV-0D and the AV-RIIS models

We now couple the (3D) AV-RIIS fluid dynamics model with
theAV-0Dvalvemodel. First,we define the relations between
the pressure values Plv and Pao and the flow rate Qao involved
in the AV-0D model (19) and the pressure p and the velocity
u in the AV-RIIS 3D model as:

Plv(t) = |Ωlv|−1
∫

Ωlv

p(x, t) dx,

Pao(t) = |Ωao|−1
∫

Ωao

p(x, t) dx,

Qao(t) = −
∫

∂Ωin

u(x, t) · nin(x) dγ,

(20)

where Ωlv and Ωao are two suitable control volumes taken
upstream the aortic valve (i.e., in the proximity of the left
ventricle base) and downstream (at the initial section of the
ascending aorta), respectively.

We now link the AV-RIIS model to the AV-0D model
through the interpolation function K(t) of Eq. (16). For this
reason, we introduce the concept of the valvular plane Γvp,
a fixed plane parallel to the annulus (Charitos and Sievers
2013) used in radiology to track the dynamics of the valve
and of its orifice. Also, we introduce the characteristic func-
tion χ{x:ϕ(x,K)<0} to select only the set of points where the
distance function ϕ of Eq. (16) is negative, i.e., the region
within the aortic valve:
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χ{x:ϕ(x,K)<0}(x) =
{
1 if ϕ(x,K) < 0,

0 if ϕ(x,K) ≥ 0.
(21)

By exploiting both the valvular plane Γvp and the character-
istic function χ{x:ϕ(x,K)<0}, we can define the Orifice Area
(OA) as a function of K:

OA(K) =
∫

Γvp

χ{x:ϕ(x,K)<0}(x) dγ. (22)

Themaximum orifice area OAmax, corresponding to the fully
open valve, is obtained by setting K = 1 in the above defi-
nition:

OAmax =
∫

Γvp

χ{x:ϕ(x,1)<0}(x) dγ. (23)

Korakianitis and Shi (2006) introduced the area resistance
(ARao) coefficient representing the resistance to the blood
flow through the orifice; in this AV-0Dmodel, ARao is depen-
dent on the opening angle ϑ as:

ARao(ϑ) =
(
1 − cos(ϑ)

)2

(
1 − cos(ϑmax)

)2 . (24)

We define the coefficient ÃRao as the opening fraction of the
valvular orifice in terms of K as:

ÃRao(K) := OA
(
K

)

OAmax
. (25)

Then, we find K such that: ÃRao(K) ≡ ARao(ϑ) for any
given ϑ ; this corresponds to reinterpret the resistance to the
blood flow introduced by Korakianitis and Shi (2006) as
the fraction of opening of the valvular orifice. Since ÃRao

depends only on the function K, enforcing ÃRao(K) ≡
ARao(ϑ) couples the AV-0D and the AV-RIIS models; more
explicitly, we have the following nonlinear coupling equa-
tion:

OA(K(t)) − ARao(ϑ(t))OAmax = 0 ∀t ∈ (0, T ). (26)

2.5 The reduced 3D–0D FSI model

We write now the fully coupled reduced 3D-0D FSI model:
for all t ∈ (0, T ), find u : Ω → R

3, p : Ω → R, ϑ ∈
[ϑmin, ϑmax], andK ∈ [0, 1] such that, for all v ∈ V0 and
q ∈ Q:

AV-RIIS

{ (
ρ ∂u

∂t , v
) + ā(u, v,K)

+ c(u, u, v) + b(v, p) = F(v) − b(u, q) = 0

AV-0D

⎧
⎨

⎩

d2ϑ
dt2

+ k f
dϑ
dt = kp (Plv − Pao) cos(ϑ)

− kv sgn(Qao) Qao sin(2ϑ)

+ kb Qao cos(ϑ)

coupling {OA(K) − ARao(ϑ) OAmax = 0,

(27)

with initial conditions u(x, 0) = 0, ϑ(0) = ϑmin, and
dϑ/dt (0) = 0 (for which also K(0) ≡ 0), where:

ā(u, v,K) := ã(u, v) + āRIIS(u, v,K),

ã(u, v) = 2μ
∫

Ω

D(u) : D(v) dx,

āRIIS(u, v,K) = RΓ

ε

∫

Ω

(
1 − H(ψ(K))

)

· δε(ϕ(K))(u − uΓ ) · v dx,

ϕ(K) =K ϕop + (1 − K) ϕcl,

ψ(K) =Kψop + (1 − K) ψcl,

uΓ (K) = dK
dt

(
ϕcl − ϕop

)

· (
K∇ϕop + (1 − K)∇ϕcl

)
,

b(v, p) = −
∫

Ω

p∇ · v dx,

c(w, u, v) = ρ

∫

Ω

(
(w · ∇)u

) · v dx,

F(v) =
∫

∂Ωin

pinnin · v dγ

+
∫

∂Ωout

poutnout · v dγ,

Plv = |Ωlv|−1
∫

Ωlv

p dx,

Pao = |Ωao|−1
∫

Ωao

p dx,

Qao = −
∫

∂Ωin

u · nin dγ,

OA(K) =
∫

Γvp

χ{x:ϕ(x,K)<0} dγ,

ARao(ϑ) =
(
1 − cos(ϑ)

)2

(
1 − cos(ϑmax)

)2 .

(28)

The coupled problemof Eq. (27) represents a reduced 3D–
0D FSI model; indeed the 3D fluid equations are coupled
with a simple 0D model for the valve; the latter conden-
sates the mechanical properties of the valve and its dynamics
onto a single kinematic variable, i.e., the “averaged” opening
angle ϑ .
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3 Numerical approximation

Wefocuson thenumerical approximationof the fully coupled
model (27). First, we discretize the three submodels of the
problem (27) separately.

3.1 AV-RIIS model: space and time discretizations

The AV-RIIS model of Eq. (27) is discretized in space using
the stabilized FE method (Quarteroni 2014) for which the
approximated velocity and pressure variables are built from
Lagrangianpolynomial basis functions of equal degree.More
formally, letTh be a tetrahedralization of our domainΩ ⊂ R

3

representing the aortic root such that Ω = ⋃
T∈Th T and

h = max
T∈Th

(diam(T )). We introduce the space:

Xr
h =

{
vh ∈ C0(Ω̄) : vh |T ∈ P

r , r ≥ 1, ∀T ∈ Th
}

,

(29)

where we denote with P
r the finite dimensional space of

polynomials of degree r . We define the FE spaces for the
velocity as V r

h = ([Xr
h]3 ∩ V0) and for the pressure as Qr

h =
Xr
h ∩ Q.
We consider the time discretization by means of back-

ward differentiation formula (BDF) of a generic order σ =
1, 2, . . . and by adopting a semi-implicit treatment for the
nonlinear term, through equal order extrapolation (Gauthier
et al. 2004). In order to limit the computational burden of the
spatial discretizationwechoose equal orderFE spacesV r

h and
Qr

h , which are not inf-sup stable and require a suitable stabi-
lization. In order to obtain a stable formulation and to control
numerical instabilities associated with the highly advective
flow regime in the valve, we consider and extend to the AV-
RIIS case the streamline upwind Petrov–Galerkin (SUPG)
stabilization for the Navier–Stokes equations. Furthermore,
as proposed by Forti and Dedè (2015) for time discretization
based on the BDF scheme, we set the SUPG parameters in
a straightforward way following the variational multiscale
(VMS) concept (Bazilevs et al. 2007). More in details, after
partitioning the time interval (0, T ) into time instants {tn}Nn=0
equally spaced by �t , we stabilize both the momentum and
the continuity equation as follows: for all n ≥ σ , assuming
thatKn and un−i

h for i = 1, . . . , σ are given,we find unh ∈ V r
h

and pnh ∈ Qr
h such that:

(

ρ
ασ unh − un,BDFσ

h

�t
, vh

)

+ ā(unh, vh,Kn)

+ c
(
un,σ
h , unh, vh

) + b
(
vh, p

n
h

) − b
(
unh, qh

)

+ (
τ
n,σ
M rnM

(
unh, p

n
h

)
, ρ

(
un,σ
h · ∇)

vh + ∇qh
)

− (
τ
n,σ
C rnC

(
unh

)
, ∇ · vh

) = F(vh)

(30)

for all vh ∈ Vr
h and qh ∈ Qr

h , where ā(·, ·), b(·, ·), c(·, ·, ·),
F(·) are defined in Eq. (28) andασ , u

n,BDFσ
h , and the extrapo-

lated velocity un,σ
h depend on the order σ of theBDF scheme;

see (Forti and Dedè 2015). The two terms rnM and rnC repre-
sent the residuals of themomentum and continuity equations,
the former including the RIIS term:

rnM (unh, p
n
h) = ρ

ασ unh − un,BDFσ
h

�t
− μ�unh

+ ρ
(
un,σ
h · ∇)

unh + ∇ pnh

+ RΓ

ε

(
1 − H(ψ(Kn))

)
δε(ϕ(Kn)) (unh − unΓ ),

rnC (unh) = ∇ · unh,

(31)

while τ
n,σ
M and τ

n,σ
C are the stabilization parameters, set as:

τ
n,σ
M =

(
4ρ2

�t2
+ ρ2

h2
∣
∣un,σ

h

∣
∣2 + Cr

μ2

h4

+ R2
Γ

ε2

(
1 − H(ψ(Kn))

)2
δ2ε (ϕ(Kn))

)− 1
2

,

τ
n,σ
C = h2

τ
n,σ
M

,

(32)

where Cr = 60×2r−2. We remark that, as in Forti and Dedè
(2015), we extrapolate both the residual and the stabilization
parameters in time according to the BDF scheme. The stabi-
lization parameters (32) strictly depend on the local spatial
discretization h and on the local velocity magnitude (Forti
and Dedè 2015). Moreover, in our approach, τ

n,σ
M and τ

n,σ
C

also depend on the resistive termand its location inΩ through
Γ ; the choice of τ

n,σ
M is motivated by the presence of the

RIIS term in the momentum equation of the Navier–Stokes
equations. Concerning the RIIS term in ā(unh, vh,Kn), we
evaluate the two level set functions ϕ and ψ at the current
time using Kn and, coherently, we use a BDF scheme to
discretize the time derivative of K, as:

āRIIS(unh, vh,Kn) = RΓ

ε

∫

Ω

(
1 − H(ψ(Kn))

)

· δε(ϕ(Kn))
(
unh − un,σ

Γ

) · vh dx,

un,σ
Γ = ασKn − Kn,BDFσ

�t

(
ϕcl − ϕop

)

· (
Kn∇ϕop + (1 − Kn)∇ϕcl

)
.

(33)

We remark that the level set functions ϕcl, ϕop, ψcl, and ψop

are not discretized in space, since we define them analyti-
cally (as described in Sect. 4); hence, these can be evaluated
directly at the quadrature nodes. Even if the describedmethod
can be solved with an arbitrary order r ≥ 1 of the FE spaces
and an arbitrary order σ ≥ 1 of the BDF scheme, we adopt
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linear polynomials for the spatial approximation (r = 1) and
a second-order scheme (BDF2, σ = 2) for the time approx-
imation for which:

ασ = 3
2 ,

un,BDFσ
h = 2un−1

h − 1
2u

n−2
h ,

un,σ
h = 2un−1

h − un−2
h ,

Kn,BDFσ = 2Kn−1
h − 1

2K
n−2
h .

(34)

This spatial approximation should yield, in principle, first
order accuracy in V -norm for the velocity and in Q-norm for
the pressure. However, since we deal with the Navier–Stokes
equations with the SUPG stabilization method, the order of
accuracy of the fluid problem itself still remains an open
issue, especially with the inclusion of the resistive terms in
the formulation.

3.2 The reduced 3D–0D FSI model: numerical
approximation

Given the initial condition u j
h = 0 and ϑ j = ϑmin (K j = 0),

for j = 0, . . . , σ − 1, the numerical solution of the full
system (27) consists in a staggered strategy based on the
semi-implicit discretization of the AV-RIIS model and an
explicit scheme for the AV-OD model: at each time instant
tn for which n ≥ σ , given Pn−1

lv , Pn−1
ao , Qn−1

ao , ϑn−1, un−i
h ,

Kn−i , i = 1, . . . , σ , we find unh , p
n
h , ϑ

n and Kn as follows:

1. Find ϑn solving the AV-0D ODE in (27) with an explicit
fourth-order Runge–Kutta method (Quarteroni et al.
2010), using ϑn−1, Pn−1

lv , Pn−1
ao , and Qn−1

ao ;
2. Given ϑn , find Kn ∈ [0, 1] solving the nonlinear cou-

pling equation (26) using the bisection method; indeed,
we reinterpret the equation as the root finding of a nonlin-
ear monotone function G inKn such that G(0)G(1) ≤ 0
for all ϑn ∈ [ϑmin, ϑmax], where:

G(Kn) = OA(Kn) −
(
1 − cos(ϑn)

)2

(
1 − cos(ϑmax)

)2 OAmax; (35)

3. GivenKn , find the solution of the discreteAV-RIISmodel
(unh, p

n
h) solving the linear system stemming from the

semi-implicit formulation (30);
4. Update Pn

lv, P
n
ao, and Q

n
ao usingEq. (20) and the computed

solution (unh, p
n
h) of the AV-RIIS model.

4 Patient-specific modeling: geometry and
boundary conditions

In this section, we focus on the patient-specific geometry
reconstruction of the aortic root and valve from medical

images; first, we deal with a reference dataset and then with
the description of the methods used to reconstruct the aortic
root and lumen and the aortic valve leaflets. We describe our
method by applying it to the reference dataset without loss of
generality. Similarly, it can be applied to any other medical
image provided the valve leaflets are at least partially visible
in their closed and open configurations.

4.1 Patient dataset

The data that we use correspond to a patient routinely
referred to the Cardiac Surgery Department of Ospedale
Sacco,Milano, Italy. A Philips Brilliance CT 64-slice system
is employed to perform a 3D contrast-enhanced computed
tomography (3D-CE-CT) study with a slice thickness of
0.67mm, a slice spacing of 0.33mm, a reconstructionmatrix
of 512 × 512 pixels, and a final resolution of 0.45mm ×
0.45mm × 0.33mm. The 3D-CE-CT images were acquired
by a retrospective ECG-gated protocol, and ten scan volumes
were generated at different instants of the cardiac cycle. The
International Review Board approval was obtained for the
conduct of this study, and the board waived the need for
patient consent.

4.2 Aortic lumen reconstruction

A surfacemodel of the last part of the left ventricle, the aortic
root, and the ascending aorta is obtained from the medical
images previously described. In particular, we select a dias-
tolic image from those available because this configuration
is assumed for the most part of the cardiac cycle (Fig. 2,
left). We use a region-based segmentation technique named
connected component localization of the region-scalable fit-
ting energy originally proposed in Fedele et al. (2015). The
method is based on the minimization of the region-scalable
fitting energy through the split Bregman method as pro-
posed in Yang et al. (2010) and incorporates an iterative
connected component extraction. Since the method depends
on the image intensity values, we perform an image prepro-
cessing to enhance the contrast between the aorta vessel and
the background and to delete the nearby organs with simi-
lar image intensity (Fedele et al. 2015) (Fig. 2, center). We
highlight that we choose this method because of its ability
to automatically reconstruct in a single step and in a precise
way the aortic root with the sinuses of Valsalva, the ascend-
ing aorta, and the aortic arch. The output of the method is
a triangulated surface representing the interface between the
vessel lumen and the arterial wall, see Fig. 2, right.

4.3 Aortic Valve Reconstruction

We describe how to reconstruct—starting from the medi-
cal images—the open and closed valves and, consequently,
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Fig. 2 Aortic lumen reconstruction: original diastolic 3D-CE-CT
image cropped in proximity of the region of interest (left), preprocessed
image (center) and reconstructed surface (right). The ascending aorta

(AA), the left ventricle (LV), the left atrium (LA), and the right (RC)
and left (LC) coronary arteries are indicated

how to analytically define the two pairs of level set func-
tions (ϕcl, ψcl) and (ϕop, ψop) which represent the two valve
configurations in our mathematical model. Indeed, we recall
that, consistently with Eq. (9), we define the implicit surfaces
representing the closed valve Γcl and the open valve Γop as:

Γcl = {x ∈ Ω : ϕcl(x) = 0 and ψcl(x) ≤ 0} ,

Γop = {
x ∈ Ω : ϕop(x) = 0 and ψop(x) ≤ 0

}
.

(36)

The general idea of our reconstruction method consists in
selecting in the diastolic and systolic images some sets of
control points lying on the leaflets, and then performing a
polynomial fitting on each resulting cloud of points asso-
ciated with either Γcl or Γop; finally, such polynomials are
combined in order to define an expression for each level set
function.

As a preliminary step, we semi-automatically rotate the
3D-CE-CT reference system in order to have the z-axis grow-
ing distally and orthogonally to the valvular plane, which in
radiology is referred as the plane passing through the aortic
annulus (Charitos and Sievers 2013). Choosing a reference
system in this way makes the valve leaflets more visible in a
3D-CE-CT image.We apply this rotation to a diastolic image
(the same used for the aortic surface reconstruction) and to a
systolic image inwhich the leaflets are completely open; con-
cerning the systolic image, the transformation also takes into
account for the misregistration between the two acquisitions
which is due to the movement of the aorta and, possibly, the
movement of the patient. In Fig. 3, top, we show the closed
and open leaflets in a plane orthogonal to the z-axis of the
new reference system (x, y, z).

The selection of control points and the polynomial fitting
are performed in a different manner for the two valve con-
figurations. In the rest of this section, we indicate with p the
polynomial surfaces described as explicit functions of the
z coordinate (z = p(x, y)) and with P the corresponding
implicit descriptions (P(x) = P(x, y, z) = z − p(x, y));
also, we underline the degree of the polynomial as subscript
and the related leaflets as superscripts (L, R and N for the
left, the right and the non-coronary leaflet, respectively).

Closed valve For each leaflet, we collect three sets of con-
trol points: in the distal part, characterized by the region
of leaflet coaptation (Fig. 3, top-left), we perform two
first degree polynomial fittings, each one representing two
attached leaflets between two sinuses ofValsalva; instead, the
proximal part, where the leaflet is clearly separated from the
others (Fig. 3, top-center), is described by a second-degree
polynomial. The existence of two clearly distinguishable
regions in the closed leaflet is physiological, as reported for
example by Charitos and Sievers (2013). As an example, in
Fig. 3, mid-left, we represent for the left coronary leaflet the
three cloudswith different shapes of points: the triangular and
squared points, where two leaflets are attached to each other,
lead to the polynomials pNL1 and pLR1 , respectively; the cloud
made of circular points leads to the second-order polynomial
pL2 . Consequently, we define the implicit surfaces PNL

1 (x),
PLR
1 (x) and PL

2 (x).

Open valve For each open leaflet (Fig. 3, top-right), we
proceed as follows: first, as shown for the left coronary leaflet
in Fig. 3, mid-center, we collect a unique cloud of points and
we repeat at greater z the points in the final distal part of the
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L
L

L

N

R

Fig. 3 View of the 3D-CE-CT medical image in planes parallel to the
valvular plane (top): diastolic image with the distal (top-left) and the
proximal (top-center) parts of the closed leaflets and systolic image
with the open leaflets (top-right). Three examples of clouds of con-
trol points with the corresponding level set in transparency (mid): ϕL ,cl

(mid-left), ϕL ,op (mid-center) and ψop (mid-right). The reconstructed
closed (bottom-left) and open (bottom-center) leaflets superimposed
to the 3D-CE-CT medical image and compared to each other (bottom-
right). The left coronary (L), the right coronary (R) and the non-coronary
(N) sinuses of Valsalva are indicated

leaflet; second, we rotate the coordinate system (x, y, z) in
order to have the z-axis orthogonal to the leaflet, defining
a leaflet-specific reference system; finally, we fit each set of
pointswith an explicit fifth degree polynomial andwefind the
corresponding implicit description in the original reference
system (x, y, z) applying the opposite rotation to the coordi-
nates. For instance, in the case of the left coronary leaflet the
rotation leads to a new reference system (xL, yL, zL) where
we define the explicit polynomial pL5 (xL, yL) and the corre-
sponding implicit description PL

5 (xL); applying the inverse
rotation to the coordinateswefind the desired implicit surface
PL
5 (x).
We now define the two level set functions ϕop and ϕcl

as a combination of the implicit polynomial surfaces just
defined:

1. For each leaflet, we change the sign of the implicit func-
tions involved in its definition (e.g., PNL

1 , PLR
1 , PL

2 , and
PL
5 for the left coronary leaflet) in order to yield a pos-

itive sign outside the valve orifice and a negative one
otherwise;

2. For each closed leaflet,we apply theminimumoperator to
the three involved polynomials; e.g., for the left coronary
leaflet we have:

ϕL ,cl(x) = min
{
PNL
1 (x), PLR

1 (x), PL
2 (x)

}
; (37)

3. For each open leaflet, we apply the minimum operator
between the related fifth degree polynomial and the cor-
responding closed leaflet expression just defined; e.g., for
the left coronary leaflet we have:
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ϕL ,op(x) = min
{
PL
5 (x), ϕL ,cl(x)

}
, (38)

this operation further accounts for the movements of the
aorta between the open and closed configurations, thus
guaranteeing that the open and closed leaflets are attached
at the same position in the annulus (see Fig. 3, bottom-
right);

4. For each configuration, we finally define the complete
level set functions ϕop and ϕcl using the maximum oper-
ator between the three leaflets expressions:

ϕop(x) = max
{
ϕN ,op(x), ϕL ,op(x), ϕR,op(x)

}

ϕcl(x) = max
{
ϕN ,cl(x), ϕL ,cl(x), ϕR,cl(x)

}
.

(39)

Concerning the auxiliary level set functions ψcl and ψop, for
each configuration, we select a unique set of points lying on
the final distal part of the leaflets (Fig. 3, mid-right) and
we perform a fifth degree polynomial fitting that defines
directly the two implicit expressions. Finally, as last step
of the method, we perform a regularization of the level set
functions ϕcl and ϕop in order to ensure that these are signed
distance functions (Osher and Fedkiw 2001) (the regularized
function ϕop is previously shown in Fig. 1, right).

In Fig. 3, mid and bottom, we highlight Γcl and Γop in
red and green, respectively; in Fig. 3, mid, we color with
pale gray the part of the first level set ϕ excluded by the
auxiliary level set function ψ and with dark gray the zero
level of the function ψop. We remark that, the repetition of
the points distally in the case of the open leaflet ensures a
continuity in the direction of the z-axis to the level set ϕop

(Fig. 3, mid-center). In Fig. 3, bottom, as example of the
reliability of our method, we show the final closed and open
valve superimposed to the 3D-CE-CT images.

4.4 Mesh generation

The computational mesh for our simulations is constructed
starting from the output of the segmentation method, i.e.,
the triangular surface representing the aortic lumen (Fig. 2,
right), consistently rotated according to the reference system
defined for the implicit surfaces Γcl and Γop.

As first step, we crop the coronary arteries from the model
interpolating the resulting hole with a thin plate spline. Then,
the surface is cut by planes perpendicular to the lumen lon-
gitudinal axis at the left ventricle and at the aortic arch in
order to create the inlet and the outlet section, respectively
(Fig. 4, top-left). To minimize the sensitivity to the bound-
ary conditions that we set, straight flow extensions are added
to the inlet and outlet faces of the model. The fluid domain
is then created filling the resulting surface with linear tetra-
hedra with the tool described in Faggiano et al. (2013b) and

Fig. 4 Processed aortic lumen surface (top-left), opened at the left ven-
tricle (LV) and at the aortic arch (AA); an example of a coarse tetrahedral
mesh with flow extensions characterized by four different regions of
refinement (top-right); the boundary conditions for one heart beat (bot-
tom)

implemented in the vascularmodeling toolkit (vmtk1). In par-
ticular, we first define four regions on the surface: a region
near the valve (region 1), a buffer region around the first one
(region 2), a third region representing the residual ascending
aorta (region 3), and a fourth region representing the flow
extensions (region 4). For each of these regions, we set a
different mesh refinement obtaining a highly refined mesh in
the first region and three different refinements in the other
three regions gradually coarsening while moving away from
the valve; we show in Fig. 4, top-right, an example of this
type of refinement in a coarse mesh made of 105 tetrahedra.
The mesh used for the numerical simulations is comprised
of 2.31 × 106 tetrahedra, with a mean mesh size in the four
regions equal to 0.21 , 0.27 , 0.41 and 0.5mm, respectively;
in detail, the valvular region (region 1) comprises 0.9 × 106

tetrahedra, while the regions 1, 2 and 3 comprise 1.8 × 106

tetrahedra.

1 http://www.vmtk.org.
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4.5 Boundary conditions

The boundary conditions of the AV-RIIS model are two
pressure profiles, pin for the inlet ∂Ωin and pout for the
outlet ∂Ωout [see Eq. (15)]. Concerning the outlet pressure
profile pout, since clinical data are not available, we pre-
scribe an idealized pressure behavior similar to the ones in
Korakianitis and Shi (2006) and Astorino et al. (2012) with
a minimum pressure value of 80mmHg at the beginning
of the systole (when the left ventricle pressure overcomes
the aortic pressure) and a maximum pressure of 120mmHg
at late systole (Fig. 4, bottom, dashed blue curve). Con-
cerning the inlet pressure profile pin, we take advantage of
the available patient-specific data, i.e., the maximum flow
rate measured by ultrasound. To this aim we proceed as
follows:

1. We perform a first simulation with a fixed open valve
(for which K = 1) prescribing at the inlet the flow rate
profile of Avolio (1980) rescaled in order to obtain the
maximum patient-specific flow rate (Fig. 4, bottom, dot-
ted black curve). To prescribe this flow rate, a Dirichlet
boundary condition with a flat velocity profile is imposed
on the inlet ∂Ωin (Faggiano et al. 2013a; Bonomi et al.
2015). In order to work with regime values of pressure
and velocities, we run this simulation for three heart
beats.

2. We obtain the systolic pressure profile psysin as result of
the last heart beat at the inlet.

3. We build the full inlet pressure profile pin (Fig. 4, bottom,
continuous red curve) as follows: when t ∈ [−0.1, 0]s
we set an exponential function interpolating the values
10mmHg and 80mmHg to reproduce the isovolumet-
ric contraction phase of the left ventricle. Then, starting
at t = 0s we impose the systolic pressure profile
psysin ; this profile is imposed for the whole systole until
the valve is completely closed (t = tcl). We remark
that the time tcl (in our simulation equal to 0.316 s)
is not fixed a priori but depends on the solution of
the AV-OD model. Finally, for t ∈ [tcl, tcl + 0.1]s
we set an exponential function to interpolate the value
of pressure at tcl and the value of 10mmHg, which
represents the idealized left ventricle diastolic pressure
(Korakianitis and Shi 2006).

We finally remark that the choice of an inlet pressure bound-
ary condition in place of the Dirichlet boundary condition
on the velocity is necessary to properly model the evolution
of the pressure in the domain along the whole cardiac cycle
and particularly the pressure jump across the closed leaflets
at diastole.

5 Results and discussion

In order to highlight the capability of our framework to recon-
struct the patient-specific leaflets, we report in Fig. 5 three
different views of the systolic 3D-CE-CT image of the patient
with the reconstructed open valve superimposed: Our aortic
valve reconstruction method captures the complex geome-
try of the leaflets, following its curvatures and irregularities.
More in detail, the polynomial fitting of the clouds of points
(see Sect. 4.3, Fig. 3) is obtained by a least-square algorithm.
The results are characterized by the following coefficients of
determination R2: an average R2 equal to 0.918 and 0.912 for
the polynomials corresponding to φcl and φop, respectively;
R2 is equal to 0.985 and 0.965 for ψcl and ψop, respectively.
The worst case exhibits the value R2 = 0.865 correspond-
ingly to φL ,op.

As it can be appreciated also from Fig. 3, in the open
position the studied leaflets are clearly asymmetrical in both
their shape and position with respect to the aortic root: the
non-coronary leaflet is almost straight and attached to the
wall (Fig. 5, left and center); the right-coronary leaflet is
characterized by a large space behind it (the right-coronary
sinus) and it assumes a standard configuration (Sturla et al.
2013) with two changes in curvature and a profile completely
convex toward the sinus (Fig. 5, left and right); on the con-
trary, the left-coronary leaflet appears to be not fully opened
and assumes an almost straight configuration in the left-non
and right-left views (Fig. 5, center and right). These differ-
ences are physiological and are specific to this patient. As
also highlighted in Faggiano et al. (2013a), Della Corte et al.
(2012) and Bonomi et al. (2015), leaflets opening restrictions
or asymmetries can influence the flow direction and the gen-
eration of helical flow patterns making the patient-specific
aortic valve reconstruction an important step toward patient-
specific simulations of the aorta (Marom 2015).

Concerning the numerical simulation, we implement our
model in the LifeV library2. In particular, the library pro-
vides an efficient and flexible parallel framework (based on
the openMPI standard) to assemble the FE matrices and uses
the Trilinos library3 to deal with preconditioning and resolu-
tion of the linear system; see in particular the FSI solvers in
Crosetto et al. (2011), Deparis et al. (2016), and Tricerri et al.
(2015). The results that we show in this section are obtained
running the simulations on a cluster using 192 CPUs, with
a mesh composed of 1.5 × 106 degrees of freedom. We set
the blood dynamic viscosity μ = 3.5 × 10−3 g/(mm s) and
the blood density ρ = 10−3 g/mm3. We choose the time
step equal to 2× 10−4 s; for time independency, we find that
when doubling the time step, the results are not affected by
appreciable changes.

2 www.lifev.org.
3 www.trilinos.org.
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Fig. 5 Systolic 3D-CE-CT image of the patient sliced along the non-coronary/right view (left), left/non-coronary view (center) and left/right view
(right). The reconstructed open valve is superimposed in bright color. The left (L), the right (R) and the non-coronary (N) sinuses of Valsalva are
indicated

Concerning the parameters of the AV-RIIS model, we set
the resistance RΓ = 106 g/(mm s) to weakly enforce the
no-slip condition on the leaflets of the valve, even in case
of an high pressure gradient across them. We have observed
that a smooth regularized Dirac function δε [Eq. (10)] fea-
turing a support across three mesh elements guarantees an
effective resistive term, thus avoiding flow penetration across
the leaflets. Consequently, since δε has a 2ε-wide support,
we suggest to set the value of ε at least 1.5 times the mean
mesh size of the valvular region which in our case is about
0.21mm; then ε is equal to 0.4mm which roughly corre-
sponds to valve leaflets 0.8mm thick. We also remark that, if
ε increases, the matrix condition number decreases, but the
valve becomes thicker and thicker. As a general guideline,
we therefore suggest to consider a fine mesh in the valvu-
lar region in order to set a sufficiently small ε reproducing
a physiological value of the valve thickness. In particular,
the thickness of a healthy valve changes with the age; for
people beyond 60 year old as the patient under investigation,
it ranges between 0.5 and 1.4mm (Sahasakul et al. 1988).
Concerning the two control volumes (subdomains) Ωlv and
Ωao used to compute the variables Plv and Pao (Eq. (20)),
we cut the vessel perpendicularly to the centerline obtaining
two 3mm-thick regions placed 10mm far from the bottom
and the top part of the valve, respectively. We found that the
numerical results of the AV-0D model are not significantly
affected by the location of these two control volumes pro-
vided that these lay at distances between 5 and 25mm from
valve.

In Fig. 6 we show the evolution of the quantities involved
in the AV-0D model [Plv, Pao and Qao of Eq. (20)] and
the evolution of the valvular angle and of the orifice area:
The leaflets start the opening stage when the pressure in
the upstream control volume (at the end of the left ventri-

Fig. 6 Evolution, during systole, of the quantities driving the AV-0D
model (top): the pressure in the control volumes taken upstream (‘p left
ventricle’, dashed green line) and downstream (‘p aortic root’, contin-
uous orange line) the aortic valve, and the flow rate at the inlet (‘flow
rate’, dotted black line). Evolution (bottom) of the valvular angle ϑ

(continuous red line) and of the orifice area (dotted blue line)

cle) overcomes the one measured downstream (in the aortic
root); on the contrary, the closing procedure starts when the
downstream pressure exceeds again the upstream pressure at
t = 0.251 s, although the flow rate is still positive for further
65ms. This behavior is obtained in virtue of the inclusion of
the AV-0D model in our method. Indeed, as opposed to other
full 3D-FSI approaches (Hsu et al. 2014; Kamensky et al.
2015; Hart et al. 2003b; Borazjani et al. 2010), our AV-RIIS
model is independent on the choice of the stress-free config-
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Fig. 7 Top view of the aortic valve shape in some instants of the cardiac cycle: opening valve (top) and closing valve (bottom). The left (L), the
right (R), and the non-coronary (N) sinuses of Valsalva are indicated

uration of the valve. As also highlighted by Marom (2015),
this choice remains a controversial aspect in case of patient-
specific simulations since a stress-free configuration might
not exist in native valves; nevertheless, handling this critical
aspect is not required by our simplified formulation.

In a physiological aortic valve, the evolution of the orifice
area during the systole can be divided into three stages (Leyh
et al. 1999; Handke et al. 2003; Steenhoven et al. 1981): a
rapid opening phase, a slow closure with very small changes
of the orifice area, and a rapid closure. The general trend
reproduced by our model (Fig. 6, bottom) coincides with this
three-stage behavior described in the in vivo studies (Leyh
et al. 1999; Handke et al. 2003; Steenhoven et al. 1981) with
the slow closure approximated by a fixed valve position, as
expected by the AV-0D model (Korakianitis and Shi 2006).
The duration of the opening and closing phases is of 11ms
and 65ms, respectively, which are times comparable to the
ones shown by the AV-0D model of Korakianitis and Shi
(2006). On the contrary, the in vivo measurements generally
show a slower opening phase (Leyh et al. 1999; Handke et al.
2003): in particular, the study of Handke et al. (2003) shows
average opening and closing times of 76±30 and 42±16ms,
respectively. The fact that the opening stage is faster than the
realistic one induces an high valve velocity uΓ leading to
some numerical instability: for this reason we consider in our
model uΓ = 0, a choice which affects the fluid behavior only
in a limited manner and only during the fast valve opening.

We remark that this limitation does not prevent the valve to
move since the solution ϑ of the AV-0D model only depends
on the values of Plv, Pao, and Qao which are independent of
valve velocity uΓ . Thus, setting uΓ equal to zero in the tran-
sitory phase introduces a quasi-static approximation of the
valve dynamics: the leaflets change their position deviating
correctly the flow along the aorta, but formally violating the
adherence of the blood to the displacing valve, even if only
for a limited time interval of the heartbeat.

The dynamics of the valve is visualized in Fig. 7, where
a sequence of snapshots in time over the cardiac cycle is
shown. The configurations assumed by the orifice while
the valve is moving are qualitatively in agreement with
the shapes reported in in vivo studies (Steenhoven et al.
1981; Handke et al. 2003), thus demonstrating the capabil-
ity of our method to reproduce the intermediate valve shapes
between the patient-specific open and closed positions.More
in detail, during the opening phase, the shape starts from a
stellate configuration (Fig. 7, top-left) and becomes trian-
gular (Fig. 7, top-center) and then circular at the maximum
opening (Fig. 7, top-right); during the closing procedure, the
shape of the valve changes toward a triangular morphology
(Fig. 7, bottom-left and bottom-center). Finally, at the end of
the systole and during the whole diastole the valve is com-
pletely closed (Fig. 7, bottom-right). Such behavior is also
observed, for instance, by Ranga et al. (2006), in a simula-
tion performed in a symmetric and idealized geometry; on
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Fig. 8 Velocity magnitude contours depicted on a long-axis slice pass-
ing by the left (L) and the non-coronary (N) Valsalva sinuses, at six
different time instants during systole. The aorta and the leaflets are
shown in transparency

the contrary, our patient-specific geometry leads to an asym-
metric shape of the orifice resulting more similar to the in
vivo images shown by Handke et al. (2003).

In Fig. 8, we show contours of the velocity magnitude
on a long-axis slice at six different time instants during the
systole, with the leaflets visible in transparency.

First, we remark the performance of our method, since
the velocity remains practically null on the leaflets even
when the maximum velocity magnitude of about 1.7m/s
is reached. The position of the slice passing by the left and
the non-coronary sinus allows to analyze the deviation of
the flow from the aortic centerline: It is evident that the
patient-specific valve geometry influences the flow direction
generating an asymmetric jet which impacts the aortic wall

at the systolic peak (Fig. 8, top-right). Such flow deviation
starts to be visible from the end of the early systole (Fig. 8,
top-center) and becomes more and more evident at late sys-
tole (Fig. 8, bottom). We emphasize the importance of using
the patient-specific geometry of the leaflets in order to obtain
such results (Marom 2015); we stress the concept that an ide-
alized symmetric geometry for the aortic root, or even only
for the three leaflets, can not capture such complex dynam-
ics of the blood flow (Borazjani et al. 2010; Hsu et al. 2014;
Ranga et al. 2006).

In Fig. 9, we show at four different times of the car-
diac cycle the blood pressure on the same long-axis slice of
Fig. 8 and inside the volumetric mesh nearby the left coro-
nary leaflet for ϕ ∈ [−0.6, 0.6]. The pressure field during the
opening of the valve, at the early systole, is visible in Fig. 9
(t = 0.01s): in this phase the pressure in the left ventricle
and in the aortic root is almost homogeneous, with the high-
est pressure gradient localized among the leaflets. The zoom
inside the mesh nearby the left coronary leaflet enhances the
localization of the pressure drop in the interior part of the
valve, while the external part of the leaflet is characterized
by a constant pressure.

At the systolic peak (Fig. 9, t = 0.15 s), we can draw simi-
lar considerations concerning the pressure distribution in the
left ventricle and in the sinuses of Valsalva, while the situ-
ation drastically changes in the ascending aorta. Indeed, the
deviation of the flow underlined in Fig. 8, top-right, induces
a corresponding pressure peak near the wall and, as a conse-
quence, a depression zone in the central part of the ascending
aorta. However, in this phase, the pressure in the left ventricle
is higher than the average pressure in the aortic root and the
valve remains fully open. On the contrary, at the late dias-
tole we notice the opposite situation (Fig. 9, t = 0.30 s):
the blood slows down and, despite the flow rate is still pos-
itive, the pressure gradient inverts its direction leading to
the valve closure. The depression zone is still present in this
phase, coherently with the persistent flow deviation (Fig. 8,
bottom-right). In Fig. 9 (t = 0.50 s), we show an instant of
the diastolic phase characterized by the high pressure jump
of more than 90mmHg across the leaflets. By looking at
the volumetric mesh of the left coronary leaflet, it is inter-
esting to note how the sharp pressure jump is localized in a
region of thickness 2ε corresponding to about threemesh ele-
ments, i.e., basically where the RIIS resistive term extend its
action; on the contrary, outside this region, the pressure is not
affected by this high pressure jump taking values with small
oscillations around the lowest and the highest values of the
color legend. More in general, looking at the four volumet-
ric meshes nearby the left coronary leaflet shown in Fig. 9,
bottom, we notice the ability of our method in reproducing
the presence of the valve using the resistive RIIS term and,
as a consequence, without the necessity of meshing the valve
surface; indeed, the movement of the leaflets does not mod-
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Fig. 9 Blood pressure at four different times during the cardiac cycle: pressure depicted on a long-axis slice passing by the left (L) and the
non-coronary (N) Valsalva sinuses and on the volumetric mesh zoomed nearby the left coronary leaflet, where the level set function ϕ ∈ [−0.6, 0.6]
at the current time

ify the computational mesh, but it is totally described by the
evolution of the two level set functions ϕ and ψ through our
method.

With the aim of showing the evolution of the 3D vortex
structures in the aorta, we show in Fig. 10 the Q-criterion
(Hunt et al. 1988) normalized for its maximum value at each
time instances and the velocity streamlines. Concerning the
early systole, the Q-criterion shows a ring detaching and then
breaking away from the three leaflets (Fig. 10, top); this high-
lights well organized laminar vortex structures in this phase
of the cardiac cycle. It is interesting to note the asymmetry
of the ring that evolves mainly in the two coronary sinuses
rather than in the non-coronary one; indeed, since the aortic
wall is almost attached to the non-coronary leaflet, the vor-
texes do not have sufficient space to develop in this sinus.
The ring visualized by the Q-criterion in early systole is also
discussed by Borazjani et al. (2010), where the authors also
underline that in an anatomic aorta the ring is asymmetric
rather than symmetric as it would occur in an idealized aorta.
At this stage of the cardiac cycle, the movement of the vor-
tex from the right and left coronary sinuses to the ascending
aorta is clearly visible also by looking at the streamlines (Fig.
10, bottom-left and bottom-center). As reported in Charitos
and Sievers (2013), these vortexes also help the leaflets not to
attach to the aortic wall. During the central part of the systole,

when the flow rate and the velocity magnitude reach their
peak values, the vortex structures break down into smaller
structures (Fig. 10, center-left); a similar behavior is com-
mented in Borazjani et al. (2010). Looking at the streamlines
(Fig. 10, bottom-right) we notice how, in this phase, a disor-
ganized recirculation appears at a bigger scale, localized in
the region of the aorta opposite to the non-coronary sinus:
this phenomenon contributes to the deviation of the blood jet
to the wall, as noticeable in Fig. 8 by observing the velocity
magnitude. At the late systole, when the velocity decreases
again, the size of vortex structures increases and their local-
ization in the opposite region of the non-coronary sinus is
more evident (Fig. 10, center-center). Finally, the patterns
assumed by the Q-criterion during the diastole are partic-
ularly interesting (Fig. 10, center-right): A big cylindrical
shape appears in the ascending aorta indicating an organized
recirculation, while two helical patterns appear only in the
two coronary sinuses indicating the presence of vortexes; as
reported in Charitos and Sievers (2013), these vortexes are
physiological and contribute to the closure of the leaflets and
to the perfusion of the coronary arteries. We remark that our
computational framework allows capturing both physiologi-
cal and pathological behaviors, a feature that would have not
been possible by using simplified geometrical configurations
of the valve.
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Fig. 10 Vortex structures visualized by a volume rendering of the nor-
malized Q-criterion at different instants of the cardiac cycle (top); on
the bottom streamlines of the velocity: the evolution of the vortexes
in the right and left coronary sinuses during the early systole (left and
center), and the systolic peak in the ascending aorta (right). The aorta
and the leaflets are imaged in transparency and the left (L), the right (R)
and the non-coronary (N) Valsalva sinuses are indicated

Comparison with basic aortic valve models In Fig. 11 we
report images of flowpatterns at the systolic peak (t = 0.15 s)
and during the closing phase (t = 0.28 s) for simulations
performed using three aortic valve models with increas-
ing complexity: the simplest model (Fig. 11, left, “without
valve”) consists in totally neglecting the valve; the interme-
diate one (Fig. 11, center, “fixed valve”) consists in including

a fixed open valve thus neglecting its dynamical effects; the
most complex one (Fig. 11, right, “moving valve”) is our full
model that includes the movement of the valve. The geome-
try of the aorta, of the leaflets (when used), and the inlet flow
rate are the same in the three cases.

The flow pattern generated by the model “without valve”
is significantly different compared to the others; indeed, in
this case the maximum velocity magnitude is cut almost by
a factor two and the flow patterns are mostly symmetric with
respect to the centerline. Concerning the “fixed valve” and
the “moving valve” models, almost negligible differences
can be noted at the systolic peak, while slightly different
flow patterns can be distinguished during the valve closure.
Therefore, in order to better quantify the differences between
these three models, we compute two fluid dynamics indexes
across three slices orthogonal to the aorta centerline: the
flow reversal ratio (FRR) index (Faggiano et al. 2013a)—
which measures the percentage of retrograde flow rate with
respect of the forward-directed flow rate—and the normal-
ized flow asymmetry (NFA) index (Sigovan et al. 2011;
Faggiano et al. 2013a), which quantifies flow eccentricity
varying from NFA = 0 when the center of forward velocity
coincides with the center of the vessel (symmetric flow) to
NFA = 1 when the center is on the vessel wall (totally asym-
metric flow). The position of the slices and the values of the
indexes are reported in Table 2.

The indexes computed for the model “without valve”
clearly indicate that the absenceof the patient-specific leaflets
affects the blood flow dynamics. Indeed, at the systolic peak,
the flow is completely forward-directed (FRR � 0.0%) and
totally centered (NFA � 0.0) without the inclusion of the
leaflets, while with the patient-specific leaflets there is a sys-
tolic vortex which causes a positive FRR (varying from 8%
on slice 1–19% on slice 3) and an evident deviation of the
flow toward the wall (NFA � 0.3).

When comparing the “fixedvalve” and the “movingvalve”
models, we notice very similar values at the systolic peak,
demonstrating that the two models behave similarly dur-
ing this phase that is crucial in clinical application. More
in details, we found a difference of FRR equal to 3.6% on
slice 1, 0.2% on slice 2, 5.1% on slice 3 and a difference
of NFA equal to 1.2% on slice 1, 0.2% on slice 2 and 2%
on slice 3. On the contrary, during the closing procedure,
the indexes present larger discrepancies: At t = 0.28 s we
found a difference of FRR equal to 14.7% on slice 1, 18.4%
on slice 2, 13.7% on slice 3 and a difference of NFA equal
to 8.9% on slice 1, 10% on slice 2 and 4.5% on slice 3.
However, these differences can not be considered significant
with respect to the intrinsic uncertainty of the aorta-valve
model.

We remark that these comparisons highlight the impor-
tance of using a detailed valve model, even if a more rigorous
study should involve a large set of patients.
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Fig. 11 Comparison of the velocity magnitude contours depicted on a
long-axis slice passing by the left (L) and the non-coronary (N) Valsalva
sinuses, for models “without valve” (left), with a “fixed valve” (center),

and with a “moving valve” (right). Results are shown at the systolic
peak (t = 0.15 s) and during the closing phase (t = 0.28 s). The aorta
and the leaflets are shown in transparency

6 Conclusions

In this paper, a full computational framework to simulate
patient-specific hemodynamics in the aorta with patient-
specific aortic valve is presented. The framework includes a
segmentation method for the aorta and a valve reconstruction
method able to obtain the closed and the open configurations
of the patient-specific valve. The fluid dynamics problem

with the inclusion of the valve is solved by a new resistive
immersed implicit surface model (AV-RIIS). Our model is
based on an analytical implicit representation of the valve
leaflets through a level set formulation. The presence of the
valve is then included in the momentum equation of the
Navier–Stokes equations by adding a resistive term, which
weakly enforces the blood to adhere to the leaflets (Fernán-
dez et al. 2008; Astorino et al. 2012). The model is then
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Table 2 FRR index (in %) and
NFA index at systolic peak
(t = 0.15 s) and during the
closing phase (t = 0.28 s), for
models “without” valve, with a
“fixed” valve, and with a
“moving” valve

Time Slice FRR [%] NFA

Without Fixed Moving Without Fixed Moving

0.15 s 1 3.755 8.313 8.025 0.126 0.314 0.311

slice 1
slice 2

slice 3

2 0.002 13.43 13.40 0.021 0.291 0.290

3 0.000 20.00 19.03 0.030 0.383 0.375

0.28 s 1 36.14 27.23 23.74 0.135 0.204 0.223

2 31.34 36.10 30.49 0.195 0.191 0.212

3 44.96 40.74 35.82 0.322 0.517 0.495

Slices at which indexes are evaluated are depicted on the right

enriched by coupling the AV-RIIS with a reduced 0D model
(Korakianitis and Shi 2006) to reproduce the movement of
the valve between its closed and open positions; we named
this model “reduced 3D–0D FSI model”. In this framework,
the coupling between the 3D and 0D models is performed
through an original algorithmwhich allows to obtain realistic
physiological results. At the discrete level, a FE formulation
is used to spatially approximate the Navier–Stokes equations
with an extended SUPG stabilization (Bazilevs et al. 2007;
Forti and Dedè 2015).

We applied our computational framework to the analysis
of blood flow in a patient enrolled by Ospedale Sacco of
Milano, Italy. The results showed that the framework suc-
ceeded in the reconstruction of the patient-specific aortic
valve leaflets in both open and closed positions: This is a
very challenging and important aspect in numerical models
for the aortic valve, since the geometrical configuration of the
valve greatly influences the hemodynamics (Marom 2015).
Indeed, patient-specific aortic leaflets in open and closed con-
figurations were not included so far in the literature as they
are usually idealized (Borazjani et al. 2010; Borazjani 2013;
Hart et al. 2003a, b, 2004; Le and Sotiropoulos 2013; Ge and
Sotiropoulos 2010; Kamensky et al. 2015; Hsu et al. 2014).
To the best of our knowledge, the work of Astorino et al.
(2012) is the only one that includes patient-specific valves in
open and closed configurations even if only within an “on–
off” strategy which neglects transitory, intermediate effects
between these configurations. In this respect, our AV-RIIS
method represents a step forward, also in consideration of the
fact that the leaflet reconstructionmethod is simple (thanks to
the polynomial fitting), versatile in pathological cases (as it
avoids the use of template meshes and mapping techniques),
and computationally efficient (in virtue of the implicit func-
tions tracking the leaflets which avoid the construction of
volumetric meshes of the valve). Moreover, we highlighted
the ability of our method to reproduce the motion of the
orifice and of the leaflets position during the cardiac cycle.
Concerning the pressure field inside the aorta, the results
demonstrated that the method is capable of capturing the

sharp pressure jump across the valve without the necessity of
meshing the valve leaflets. The recovered velocity field evi-
denced an asymmetric fluid pattern, which is strictly linked
to patient-specific geometric asymmetries, captured thanks
to our method, as also highlighted by the comparison with
simulations performed without the inclusion of the leaflets.

In summary, we demonstrated the importance of count-
ing on a framework which is capable of simulating blood
flow through a patient-specific aortic valve; as a mat-
ter of fact, even more sophisticated approaches used for
the same patient-specific geometry—but with idealized
leaflets—could hardly grasp the asymmetrical hemodynam-
ics characterizing the patient as demonstrated in Faggiano
et al. (2013a), Bonomi et al. (2015), Wendell et al. (2013),
Della Corte et al. (2012). The variability among different
patients can be captured only considering the patient-specific
aortic geometry and the patient-specific leaflets in the correct
position. Being our proposed framework independent of any
a priori assumption on the shape of the leaflets, it can be used
for both physiological and pathological cases, the latter being
the most significant for clinicians. We remark that patholog-
ical cases involve a large geometric variability of the valve
(e.g., the bicuspid valve can assume five different principal
configurations), thus demanding for versatile computational
tools, a requisite that our computational framework addresses
by means of the newly proposed reconstruction approach of
the valve leaflets. The analysis reported in this work is purely
demonstrative of the ability of our method, and we did not
provide any clinical interpretation of the numerical results
associated with the patient; however, since our reduced 3D–
0D FSI model is conceived to work on patient-specific data,
it can be used to better understand the hemodynamics of
the ascending aorta, as well to study aortic and valvular dis-
eases. In these cases, a complete sensitivity study must be
performed on the choice of the grid size in relation to clini-
cal indicators.

We stress the fact that our reduced 3D–0D FSI model
involves the coupling of a detailedmodel for the fluid dynam-
ics of the blood with a simplified, kinematic model for the
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valve. The latter model— called AV-0D—is too simplistic
to yield detailed information on the mechanical behavior of
the valve itself, as e.g., on local strains and stresses. Indeed,
the main goal of our computational framework is to take into
account for the valve effects onto the blood flow. Further-
more, in the current model we assumed rigid arterial walls
for the aorta, thus neglecting the interaction betweenfluid and
aortic wall structure; however, this can be easily taken into
account by extending the RIIS approach to a fluid–structure
model of the aorta. Concerning the leaflets, more sophisti-
cated mechanical models of the valve can be used in place of
the purely geometric AV-0D model by Korakianitis and Shi
(2006) and coupled with the AV-RIIS model for the fluid, yet
maintaining the level set description of the immersed valve.

A further limitation of the current work is the dependency
of the valve behavior in the AV-0D model on the parame-
ters proposed in Korakianitis and Shi (2006), which, for the
patient at hand, produces a very fast opening stage of the
valve. Tuning the parameters to match the real valve velocity
at the opening and closing stages is a possibility, even if, for
the patient under consideration, their measurements or even
estimates were not possible. In this respect, a further devel-
opment of this work would consist in setting the parameters
involved in the AV-0D model to obtain physiological valve
behaviors; we remark however that this fitting should be per-
formed on a large set of patients.

Moreover, we remark that the very fast opening of the
valve induces large values of the velocity uΓ which, with-
out suitable smoothing or regularization procedures of the
level set function representing the leaflet, leads to numerical
instabilities. We overcame this problem by setting uΓ = 0
in Eq. (28), a simplification that introduces a quasi-static
approximation of the valve dynamics. Albeit this formally
represents a violation of the physical adherence of the blood
to the moving valve, we believe that the effect of our approx-
imation is very limited in time along the heartbeat and in
space in the aortic root.
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Appendix: Benchmark problems for theRIISmodel

We consider two bidimensional test problems taken from
the literature and use them as benchmark tests for the treat-
ment of rigid body motion in a fluid using the RIIS approach
described above.

The first benchmark problem is the oscillating cylinder
by Wan et al. (2004): It consists of a prescribed sinusoidal
motion around the center of a rectangle and with a no-slip

0.12 0.25 0.38 5.00.0
velocity magnitude

t = t0 t = t0 + 1
4T

t = t0 + 1
2 tT = t0 + 3

4T

Fig. 12 The oscillating cylinder test (Wan et al. 2004) as benchmark
for the RIIS model: on the top the mesh adopted; on the center a zoom
on the velocity magnitude with vectors depicted at four instants of the
oscillating period (t0 = 22.25 s and T = 4 s); on the bottom the result-
ing drag (Cd , dotted blue line) and lift (Cl , red line) coefficients and the
scaling of the no-slip condition error (starred green line) with the mesh
size

condition at the boundary of the domain. The complete set
of data used in the test are provided in the above reference.
Being (Xc(t),Yc(t)) the moving coordinates of the center of
the cylinder and r = 0.05 its radius, we define the distance
function ϕ from the circumference of the cylinder as:

ϕ(x, y, t) = r −
√

(x − Xc(t))2 + (y − Yc(t))2, (40)
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Fig. 13 The valve test (Auricchio et al. 2016) as benchmark for the
RIIS model: on the top the velocity magnitude and the streamlines at
the same instants shown in the reference paper; on the bottom the scaling
of the no-slip condition error with the mesh size for different values of
the resistance RΓ

while the auxiliary level set function ψ can be defined as
an arbitrary negative function. We define the smooth Dirac
function as:

δε(ϕ) = 0.5 (1 + tanh(2.5ϕ/ε)) , (41)

in order to activate the resistive term also inside the cylinder.
We choose a time step of 0.01 s and we generate a non-
uniform mesh (Fig. 12, top). We set the resistance RΓ equal
to 200 and the parameter ε equal to 2h, being h = 0.004
the mesh size near the moving cylinder. In Figure 12, center,
we show the results of the velocity field at four characteristic
instants of the oscillating period, that well compare with the
vorticity field shown in (Auricchio et al. 2016). The com-
puted drag (Cd ) and lift (Cl ) coefficients are highlighted in
Fig. 12, bottom. Finally, we define the dimensionless error
e in the imposition of the no-slip condition on the immersed

body Γ , i.e., the cylinder, as:

e = ||(1 − H(ψ)
)
δε(ϕ) (u − uΓ )||L2

||(1 − H(ψ)
)
δε(ϕ)UΓ ||L2

, (42)

where uΓ andUΓ are the prescribed velocity of the immersed
body and its characteristic value taken as its maximum mag-
nitude in time, respectively. We find an average value in time
of e = 4.16 × 10−4, thus demonstrating the fulfillment of
the no-slip condition in the cylinder; furthermore, a linear
scaling of the error with respect to the mesh size is reported,
as shown in Fig. 12, bottom.

The second benchmark problem is reported in Auricchio
et al. (2016), where it is specifically referred as Test 2, in
which the motion of a rigid body in the fluid, specifically a
rigid valve leaflet, is prescribed. In order to reproduce the
results, we generate a uniformly distributed mesh character-
ized by a mesh size h = 0.0125 cm and we set the resistance
RΓ = 100 and the parameter ε = 2h. We define the two
level set functions as:

ϕ(x, y, ϑ(t)) = cos(ϑ(t)) y − sin(ϑ(t)) x,

ψ(x, y) = l −
√

x2 + y2,
(43)

where ϑ is the prescribed opening angle of the valve and
l = 0.999 is the length of the leaflet. The velocity of the valve
uΓ is determined accordingly using the prescribed value
of ∂ϑ/∂t . For this test, the original smooth Dirac function
[Eq. (10)] is used. The results of the test are shown in Figure
13. We find an average value in time of the no-slip condition
error e = 4.47×10−3, demonstrating again the successfully
imposition of the no-slip condition on the immersed surface
Γ ; we also note a linear scaling of the errorwith themesh size
h and a reduction of the error with the increasing of the resis-
tance RΓ that becomes negligible over a certain value (Fig.
13, bottom). Finally, the results obtained for the velocity field
(Fig. 13, top) very well agree with those in (Auricchio et al.
2016); albeit qualitative, this comparison provides a valida-
tion of our RIIS approach against a benchmark problem in
the same area of application.
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